1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
use std::io::{self, Read, Write};
use std::fmt;

use {AsyncRead, AsyncWrite};
use framed_read::{framed_read2, framed_read2_with_buffer, FramedRead2, Decoder};
use framed_write::{framed_write2, framed_write2_with_buffer, FramedWrite2, Encoder};

use futures::{Stream, Sink, StartSend, Poll};
use bytes::{BytesMut};

/// A unified `Stream` and `Sink` interface to an underlying I/O object, using
/// the `Encoder` and `Decoder` traits to encode and decode frames.
///
/// You can create a `Framed` instance by using the `AsyncRead::framed` adapter.
pub struct Framed<T, U> {
    inner: FramedRead2<FramedWrite2<Fuse<T, U>>>,
}

pub struct Fuse<T, U>(pub T, pub U);

pub fn framed<T, U>(inner: T, codec: U) -> Framed<T, U>
    where T: AsyncRead + AsyncWrite,
          U: Decoder + Encoder,
{
    Framed {
        inner: framed_read2(framed_write2(Fuse(inner, codec))),
    }
}

impl<T, U> Framed<T, U> {
    /// Provides a `Stream` and `Sink` interface for reading and writing to this
    /// `Io` object, using `Decode` and `Encode` to read and write the raw data.
    ///
    /// Raw I/O objects work with byte sequences, but higher-level code usually
    /// wants to batch these into meaningful chunks, called "frames". This
    /// method layers framing on top of an I/O object, by using the `Codec`
    /// traits to handle encoding and decoding of messages frames. Note that
    /// the incoming and outgoing frame types may be distinct.
    ///
    /// This function returns a *single* object that is both `Stream` and
    /// `Sink`; grouping this into a single object is often useful for layering
    /// things like gzip or TLS, which require both read and write access to the
    /// underlying object.
    ///
    /// This objects takes a stream and a readbuffer and a writebuffer. These field
    /// can be obtained from an existing `Framed` with the `into_parts` method.
    ///
    /// If you want to work more directly with the streams and sink, consider
    /// calling `split` on the `Framed` returned by this method, which will
    /// break them into separate objects, allowing them to interact more easily.
    pub fn from_parts(parts: FramedParts<T>, codec: U) -> Framed<T, U>
    {
        Framed {
            inner: framed_read2_with_buffer(framed_write2_with_buffer(Fuse(parts.inner, codec), parts.writebuf), parts.readbuf),
        }
    }

    /// Returns a reference to the underlying I/O stream wrapped by
    /// `Frame`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_ref(&self) -> &T {
        &self.inner.get_ref().get_ref().0
    }

    /// Returns a mutable reference to the underlying I/O stream wrapped by
    /// `Frame`.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn get_mut(&mut self) -> &mut T {
        &mut self.inner.get_mut().get_mut().0
    }

    /// Consumes the `Frame`, returning its underlying I/O stream.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn into_inner(self) -> T {
        self.inner.into_inner().into_inner().0
    }

    /// Consumes the `Frame`, returning its underlying I/O stream and the buffer
    /// with unprocessed data.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    pub fn into_parts(self) -> FramedParts<T> {
        let (inner, readbuf) = self.inner.into_parts();
	    let (inner, writebuf) = inner.into_parts();
        FramedParts { inner: inner.0, readbuf: readbuf, writebuf: writebuf }
    }

    /// Consumes the `Frame`, returning its underlying I/O stream and the buffer
    /// with unprocessed data, and also the current codec state.
    ///
    /// Note that care should be taken to not tamper with the underlying stream
    /// of data coming in as it may corrupt the stream of frames otherwise
    /// being worked with.
    ///
    /// Note that this function will be removed once the codec has been
    /// integrated into `FramedParts` in a new version (see
    /// [#53](https://github.com/tokio-rs/tokio-io/pull/53)).
    pub fn into_parts_and_codec(self) -> (FramedParts<T>, U) {
        let (inner, readbuf) = self.inner.into_parts();
        let (inner, writebuf) = inner.into_parts();
        (FramedParts { inner: inner.0, readbuf: readbuf, writebuf: writebuf }, inner.1)
    }
}

impl<T, U> Stream for Framed<T, U>
    where T: AsyncRead,
          U: Decoder,
{
    type Item = U::Item;
    type Error = U::Error;

    fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
        self.inner.poll()
    }
}

impl<T, U> Sink for Framed<T, U>
    where T: AsyncWrite,
          U: Encoder,
          U::Error: From<io::Error>,
{
    type SinkItem = U::Item;
    type SinkError = U::Error;

    fn start_send(&mut self,
                  item: Self::SinkItem)
                  -> StartSend<Self::SinkItem, Self::SinkError>
    {
        self.inner.get_mut().start_send(item)
    }

    fn poll_complete(&mut self) -> Poll<(), Self::SinkError> {
        self.inner.get_mut().poll_complete()
    }

    fn close(&mut self) -> Poll<(), Self::SinkError> {
        self.inner.get_mut().close()
    }
}

impl<T, U> fmt::Debug for Framed<T, U>
    where T: fmt::Debug,
          U: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("Framed")
         .field("io", &self.inner.get_ref().get_ref().0)
         .field("codec", &self.inner.get_ref().get_ref().1)
         .finish()
    }
}

// ===== impl Fuse =====

impl<T: Read, U> Read for Fuse<T, U> {
    fn read(&mut self, dst: &mut [u8]) -> io::Result<usize> {
        self.0.read(dst)
    }
}

impl<T: AsyncRead, U> AsyncRead for Fuse<T, U> {
    unsafe fn prepare_uninitialized_buffer(&self, buf: &mut [u8]) -> bool {
        self.0.prepare_uninitialized_buffer(buf)
    }
}

impl<T: Write, U> Write for Fuse<T, U> {
    fn write(&mut self, src: &[u8]) -> io::Result<usize> {
        self.0.write(src)
    }

    fn flush(&mut self) -> io::Result<()> {
        self.0.flush()
    }
}

impl<T: AsyncWrite, U> AsyncWrite for Fuse<T, U> {
    fn shutdown(&mut self) -> Poll<(), io::Error> {
        self.0.shutdown()
    }
}

impl<T, U: Decoder> Decoder for Fuse<T, U> {
    type Item = U::Item;
    type Error = U::Error;

    fn decode(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
        self.1.decode(buffer)
    }

    fn decode_eof(&mut self, buffer: &mut BytesMut) -> Result<Option<Self::Item>, Self::Error> {
        self.1.decode_eof(buffer)
    }
}

impl<T, U: Encoder> Encoder for Fuse<T, U> {
    type Item = U::Item;
    type Error = U::Error;

    fn encode(&mut self, item: Self::Item, dst: &mut BytesMut) -> Result<(), Self::Error> {
        self.1.encode(item, dst)
    }
}

/// `FramedParts` contains an export of the data of a Framed transport.
/// It can be used to construct a new `Framed` with a different codec.
/// It contains all current buffers and the inner transport.
#[derive(Debug)]
pub struct FramedParts<T>
{
    /// The inner transport used to read bytes to and write bytes to
    pub inner: T,
    /// The buffer with read but unprocessed data.
    pub readbuf: BytesMut,
    /// A buffer with unprocessed data which are not written yet.
    pub writebuf: BytesMut
}