1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Utilities for random number generation
//!
//! The key functions are `random()` and `Rng::gen()`. These are polymorphic and
//! so can be used to generate any type that implements `Rand`. Type inference
//! means that often a simple call to `rand::random()` or `rng.gen()` will
//! suffice, but sometimes an annotation is required, e.g.
//! `rand::random::<f64>()`.
//!
//! See the `distributions` submodule for sampling random numbers from
//! distributions like normal and exponential.
//!
//! # Usage
//!
//! This crate is [on crates.io](https://crates.io/crates/rand) and can be
//! used by adding `rand` to the dependencies in your project's `Cargo.toml`.
//!
//! ```toml
//! [dependencies]
//! rand = "0.3"
//! ```
//!
//! and this to your crate root:
//!
//! ```rust
//! extern crate rand;
//! ```
//!
//! # Thread-local RNG
//!
//! There is built-in support for a RNG associated with each thread stored
//! in thread-local storage. This RNG can be accessed via `thread_rng`, or
//! used implicitly via `random`. This RNG is normally randomly seeded
//! from an operating-system source of randomness, e.g. `/dev/urandom` on
//! Unix systems, and will automatically reseed itself from this source
//! after generating 32 KiB of random data.
//!
//! # Cryptographic security
//!
//! An application that requires an entropy source for cryptographic purposes
//! must use `OsRng`, which reads randomness from the source that the operating
//! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on
//! Windows).
//! The other random number generators provided by this module are not suitable
//! for such purposes.
//!
//! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`.
//! This module uses `/dev/urandom` for the following reasons:
//!
//! -   On Linux, `/dev/random` may block if entropy pool is empty;
//!     `/dev/urandom` will not block.  This does not mean that `/dev/random`
//!     provides better output than `/dev/urandom`; the kernel internally runs a
//!     cryptographically secure pseudorandom number generator (CSPRNG) based on
//!     entropy pool for random number generation, so the "quality" of
//!     `/dev/random` is not better than `/dev/urandom` in most cases.  However,
//!     this means that `/dev/urandom` can yield somewhat predictable randomness
//!     if the entropy pool is very small, such as immediately after first
//!     booting.  Linux 3.17 added the `getrandom(2)` system call which solves
//!     the issue: it blocks if entropy pool is not initialized yet, but it does
//!     not block once initialized.  `OsRng` tries to use `getrandom(2)` if
//!     available, and use `/dev/urandom` fallback if not.  If an application
//!     does not have `getrandom` and likely to be run soon after first booting,
//!     or on a system with very few entropy sources, one should consider using
//!     `/dev/random` via `ReadRng`.
//! -   On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no
//!     difference between the two sources. (Also note that, on some systems
//!     e.g.  FreeBSD, both `/dev/random` and `/dev/urandom` may block once if
//!     the CSPRNG has not seeded yet.)
//!
//! # Examples
//!
//! ```rust
//! use rand::Rng;
//!
//! let mut rng = rand::thread_rng();
//! if rng.gen() { // random bool
//!     println!("i32: {}, u32: {}", rng.gen::<i32>(), rng.gen::<u32>())
//! }
//! ```
//!
//! ```rust
//! let tuple = rand::random::<(f64, char)>();
//! println!("{:?}", tuple)
//! ```
//!
//! ## Monte Carlo estimation of π
//!
//! For this example, imagine we have a square with sides of length 2 and a unit
//! circle, both centered at the origin. Since the area of a unit circle is π,
//! we have:
//!
//! ```text
//!     (area of unit circle) / (area of square) = π / 4
//! ```
//!
//! So if we sample many points randomly from the square, roughly π / 4 of them
//! should be inside the circle.
//!
//! We can use the above fact to estimate the value of π: pick many points in
//! the square at random, calculate the fraction that fall within the circle,
//! and multiply this fraction by 4.
//!
//! ```
//! use rand::distributions::{IndependentSample, Range};
//!
//! fn main() {
//!    let between = Range::new(-1f64, 1.);
//!    let mut rng = rand::thread_rng();
//!
//!    let total = 1_000_000;
//!    let mut in_circle = 0;
//!
//!    for _ in 0..total {
//!        let a = between.ind_sample(&mut rng);
//!        let b = between.ind_sample(&mut rng);
//!        if a*a + b*b <= 1. {
//!            in_circle += 1;
//!        }
//!    }
//!
//!    // prints something close to 3.14159...
//!    println!("{}", 4. * (in_circle as f64) / (total as f64));
//! }
//! ```
//!
//! ## Monty Hall Problem
//!
//! This is a simulation of the [Monty Hall Problem][]:
//!
//! > Suppose you're on a game show, and you're given the choice of three doors:
//! > Behind one door is a car; behind the others, goats. You pick a door, say
//! > No. 1, and the host, who knows what's behind the doors, opens another
//! > door, say No. 3, which has a goat. He then says to you, "Do you want to
//! > pick door No. 2?" Is it to your advantage to switch your choice?
//!
//! The rather unintuitive answer is that you will have a 2/3 chance of winning
//! if you switch and a 1/3 chance of winning if you don't, so it's better to
//! switch.
//!
//! This program will simulate the game show and with large enough simulation
//! steps it will indeed confirm that it is better to switch.
//!
//! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem
//!
//! ```
//! use rand::Rng;
//! use rand::distributions::{IndependentSample, Range};
//!
//! struct SimulationResult {
//!     win: bool,
//!     switch: bool,
//! }
//!
//! // Run a single simulation of the Monty Hall problem.
//! fn simulate<R: Rng>(random_door: &Range<u32>, rng: &mut R)
//!                     -> SimulationResult {
//!     let car = random_door.ind_sample(rng);
//!
//!     // This is our initial choice
//!     let mut choice = random_door.ind_sample(rng);
//!
//!     // The game host opens a door
//!     let open = game_host_open(car, choice, rng);
//!
//!     // Shall we switch?
//!     let switch = rng.gen();
//!     if switch {
//!         choice = switch_door(choice, open);
//!     }
//!
//!     SimulationResult { win: choice == car, switch: switch }
//! }
//!
//! // Returns the door the game host opens given our choice and knowledge of
//! // where the car is. The game host will never open the door with the car.
//! fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 {
//!     let choices = free_doors(&[car, choice]);
//!     rand::sample(rng, choices.into_iter(), 1)[0]
//! }
//!
//! // Returns the door we switch to, given our current choice and
//! // the open door. There will only be one valid door.
//! fn switch_door(choice: u32, open: u32) -> u32 {
//!     free_doors(&[choice, open])[0]
//! }
//!
//! fn free_doors(blocked: &[u32]) -> Vec<u32> {
//!     (0..3).filter(|x| !blocked.contains(x)).collect()
//! }
//!
//! fn main() {
//!     // The estimation will be more accurate with more simulations
//!     let num_simulations = 10000;
//!
//!     let mut rng = rand::thread_rng();
//!     let random_door = Range::new(0, 3);
//!
//!     let (mut switch_wins, mut switch_losses) = (0, 0);
//!     let (mut keep_wins, mut keep_losses) = (0, 0);
//!
//!     println!("Running {} simulations...", num_simulations);
//!     for _ in 0..num_simulations {
//!         let result = simulate(&random_door, &mut rng);
//!
//!         match (result.win, result.switch) {
//!             (true, true) => switch_wins += 1,
//!             (true, false) => keep_wins += 1,
//!             (false, true) => switch_losses += 1,
//!             (false, false) => keep_losses += 1,
//!         }
//!     }
//!
//!     let total_switches = switch_wins + switch_losses;
//!     let total_keeps = keep_wins + keep_losses;
//!
//!     println!("Switched door {} times with {} wins and {} losses",
//!              total_switches, switch_wins, switch_losses);
//!
//!     println!("Kept our choice {} times with {} wins and {} losses",
//!              total_keeps, keep_wins, keep_losses);
//!
//!     // With a large number of simulations, the values should converge to
//!     // 0.667 and 0.333 respectively.
//!     println!("Estimated chance to win if we switch: {}",
//!              switch_wins as f32 / total_switches as f32);
//!     println!("Estimated chance to win if we don't: {}",
//!              keep_wins as f32 / total_keeps as f32);
//! }
//! ```

#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
       html_favicon_url = "https://www.rust-lang.org/favicon.ico",
       html_root_url = "https://docs.rs/rand/0.3")]

#![deny(missing_debug_implementations)]

#![cfg_attr(feature = "i128_support", feature(i128_type))]

#[cfg(test)] #[macro_use] extern crate log;


use std::cell::RefCell;
use std::marker;
use std::mem;
use std::io;
use std::rc::Rc;
use std::num::Wrapping as w;
use std::time;

pub use os::OsRng;

pub use isaac::{IsaacRng, Isaac64Rng};
pub use chacha::ChaChaRng;

#[cfg(target_pointer_width = "32")]
use IsaacRng as IsaacWordRng;
#[cfg(target_pointer_width = "64")]
use Isaac64Rng as IsaacWordRng;

use distributions::{Range, IndependentSample};
use distributions::range::SampleRange;

pub mod distributions;
pub mod isaac;
pub mod chacha;
pub mod reseeding;
mod rand_impls;
pub mod os;
pub mod read;

#[allow(bad_style)]
type w64 = w<u64>;
#[allow(bad_style)]
type w32 = w<u32>;

/// A type that can be randomly generated using an `Rng`.
///
/// ## Built-in Implementations
///
/// This crate implements `Rand` for various primitive types.  Assuming the
/// provided `Rng` is well-behaved, these implementations generate values with
/// the following ranges and distributions:
///
/// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed
///   over all values of the type.
/// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all
///   code points in the range `0...0x10_FFFF`, except for the range
///   `0xD800...0xDFFF` (the surrogate code points).  This includes
///   unassigned/reserved code points.
/// * `bool`: Generates `false` or `true`, each with probability 0.5.
/// * Floating point types (`f32` and `f64`): Uniformly distributed in the
///   half-open range `[0, 1)`.  (The [`Open01`], [`Closed01`], [`Exp1`], and
///   [`StandardNormal`] wrapper types produce floating point numbers with
///   alternative ranges or distributions.)
///
/// [`Open01`]: struct.Open01.html
/// [`Closed01`]: struct.Closed01.html
/// [`Exp1`]: struct.Exp1.html
/// [`StandardNormal`]: struct.StandardNormal.html
///
/// The following aggregate types also implement `Rand` as long as their
/// component types implement it:
///
/// * Tuples and arrays: Each element of the tuple or array is generated
///   independently, using its own `Rand` implementation.
/// * `Option<T>`: Returns `None` with probability 0.5; otherwise generates a
///   random `T` and returns `Some(T)`.

pub trait Rand : Sized {
    /// Generates a random instance of this type using the specified source of
    /// randomness.
    fn rand<R: Rng>(rng: &mut R) -> Self;
}

/// A random number generator.
pub trait Rng {
    /// Return the next random u32.
    ///
    /// This rarely needs to be called directly, prefer `r.gen()` to
    /// `r.next_u32()`.
    // FIXME #rust-lang/rfcs#628: Should be implemented in terms of next_u64
    fn next_u32(&mut self) -> u32;

    /// Return the next random u64.
    ///
    /// By default this is implemented in terms of `next_u32`. An
    /// implementation of this trait must provide at least one of
    /// these two methods. Similarly to `next_u32`, this rarely needs
    /// to be called directly, prefer `r.gen()` to `r.next_u64()`.
    fn next_u64(&mut self) -> u64 {
        ((self.next_u32() as u64) << 32) | (self.next_u32() as u64)
    }

    /// Return the next random f32 selected from the half-open
    /// interval `[0, 1)`.
    ///
    /// This uses a technique described by Saito and Matsumoto at
    /// MCQMC'08. Given that the IEEE floating point numbers are
    /// uniformly distributed over [1,2), we generate a number in
    /// this range and then offset it onto the range [0,1). Our
    /// choice of bits (masking v. shifting) is arbitrary and
    /// should be immaterial for high quality generators. For low
    /// quality generators (ex. LCG), prefer bitshifting due to
    /// correlation between sequential low order bits.
    ///
    /// See:
    /// A PRNG specialized in double precision floating point numbers using
    /// an affine transition
    ///
    /// * <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/dSFMT.pdf>
    /// * <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/dSFMT-slide-e.pdf>
    ///
    /// By default this is implemented in terms of `next_u32`, but a
    /// random number generator which can generate numbers satisfying
    /// the requirements directly can overload this for performance.
    /// It is required that the return value lies in `[0, 1)`.
    ///
    /// See `Closed01` for the closed interval `[0,1]`, and
    /// `Open01` for the open interval `(0,1)`.
    fn next_f32(&mut self) -> f32 {
        const UPPER_MASK: u32 = 0x3F800000;
        const LOWER_MASK: u32 = 0x7FFFFF;
        let tmp = UPPER_MASK | (self.next_u32() & LOWER_MASK);
        let result: f32 = unsafe { mem::transmute(tmp) };
        result - 1.0
    }

    /// Return the next random f64 selected from the half-open
    /// interval `[0, 1)`.
    ///
    /// By default this is implemented in terms of `next_u64`, but a
    /// random number generator which can generate numbers satisfying
    /// the requirements directly can overload this for performance.
    /// It is required that the return value lies in `[0, 1)`.
    ///
    /// See `Closed01` for the closed interval `[0,1]`, and
    /// `Open01` for the open interval `(0,1)`.
    fn next_f64(&mut self) -> f64 {
        const UPPER_MASK: u64 = 0x3FF0000000000000;
        const LOWER_MASK: u64 = 0xFFFFFFFFFFFFF;
        let tmp = UPPER_MASK | (self.next_u64() & LOWER_MASK);
        let result: f64 = unsafe { mem::transmute(tmp) };
        result - 1.0
    }

    /// Fill `dest` with random data.
    ///
    /// This has a default implementation in terms of `next_u64` and
    /// `next_u32`, but should be overridden by implementations that
    /// offer a more efficient solution than just calling those
    /// methods repeatedly.
    ///
    /// This method does *not* have a requirement to bear any fixed
    /// relationship to the other methods, for example, it does *not*
    /// have to result in the same output as progressively filling
    /// `dest` with `self.gen::<u8>()`, and any such behaviour should
    /// not be relied upon.
    ///
    /// This method should guarantee that `dest` is entirely filled
    /// with new data, and may panic if this is impossible
    /// (e.g. reading past the end of a file that is being used as the
    /// source of randomness).
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut v = [0u8; 13579];
    /// thread_rng().fill_bytes(&mut v);
    /// println!("{:?}", &v[..]);
    /// ```
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        // this could, in theory, be done by transmuting dest to a
        // [u64], but this is (1) likely to be undefined behaviour for
        // LLVM, (2) has to be very careful about alignment concerns,
        // (3) adds more `unsafe` that needs to be checked, (4)
        // probably doesn't give much performance gain if
        // optimisations are on.
        let mut count = 0;
        let mut num = 0;
        for byte in dest.iter_mut() {
            if count == 0 {
                // we could micro-optimise here by generating a u32 if
                // we only need a few more bytes to fill the vector
                // (i.e. at most 4).
                num = self.next_u64();
                count = 8;
            }

            *byte = (num & 0xff) as u8;
            num >>= 8;
            count -= 1;
        }
    }

    /// Return a random value of a `Rand` type.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// let x: u32 = rng.gen();
    /// println!("{}", x);
    /// println!("{:?}", rng.gen::<(f64, bool)>());
    /// ```
    #[inline(always)]
    fn gen<T: Rand>(&mut self) -> T where Self: Sized {
        Rand::rand(self)
    }

    /// Return an iterator that will yield an infinite number of randomly
    /// generated items.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>();
    /// println!("{:?}", x);
    /// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5)
    ///                     .collect::<Vec<(f64, bool)>>());
    /// ```
    fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> where Self: Sized {
        Generator { rng: self, _marker: marker::PhantomData }
    }

    /// Generate a random value in the range [`low`, `high`).
    ///
    /// This is a convenience wrapper around
    /// `distributions::Range`. If this function will be called
    /// repeatedly with the same arguments, one should use `Range`, as
    /// that will amortize the computations that allow for perfect
    /// uniformity, as they only happen on initialization.
    ///
    /// # Panics
    ///
    /// Panics if `low >= high`.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// let n: u32 = rng.gen_range(0, 10);
    /// println!("{}", n);
    /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64);
    /// println!("{}", m);
    /// ```
    fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T where Self: Sized {
        assert!(low < high, "Rng.gen_range called with low >= high");
        Range::new(low, high).ind_sample(self)
    }

    /// Return a bool with a 1 in n chance of true
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// println!("{}", rng.gen_weighted_bool(3));
    /// ```
    fn gen_weighted_bool(&mut self, n: u32) -> bool where Self: Sized {
        n <= 1 || self.gen_range(0, n) == 0
    }

    /// Return an iterator of random characters from the set A-Z,a-z,0-9.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{thread_rng, Rng};
    ///
    /// let s: String = thread_rng().gen_ascii_chars().take(10).collect();
    /// println!("{}", s);
    /// ```
    fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> where Self: Sized {
        AsciiGenerator { rng: self }
    }

    /// Return a random element from `values`.
    ///
    /// Return `None` if `values` is empty.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::{thread_rng, Rng};
    ///
    /// let choices = [1, 2, 4, 8, 16, 32];
    /// let mut rng = thread_rng();
    /// println!("{:?}", rng.choose(&choices));
    /// assert_eq!(rng.choose(&choices[..0]), None);
    /// ```
    fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> where Self: Sized {
        if values.is_empty() {
            None
        } else {
            Some(&values[self.gen_range(0, values.len())])
        }
    }

    /// Return a mutable pointer to a random element from `values`.
    ///
    /// Return `None` if `values` is empty.
    fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> where Self: Sized {
        if values.is_empty() {
            None
        } else {
            let len = values.len();
            Some(&mut values[self.gen_range(0, len)])
        }
    }

    /// Shuffle a mutable slice in place.
    ///
    /// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
    /// which produces an unbiased permutation.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{thread_rng, Rng};
    ///
    /// let mut rng = thread_rng();
    /// let mut y = [1, 2, 3];
    /// rng.shuffle(&mut y);
    /// println!("{:?}", y);
    /// rng.shuffle(&mut y);
    /// println!("{:?}", y);
    /// ```
    fn shuffle<T>(&mut self, values: &mut [T]) where Self: Sized {
        let mut i = values.len();
        while i >= 2 {
            // invariant: elements with index >= i have been locked in place.
            i -= 1;
            // lock element i in place.
            values.swap(i, self.gen_range(0, i + 1));
        }
    }
}

impl<'a, R: ?Sized> Rng for &'a mut R where R: Rng {
    fn next_u32(&mut self) -> u32 {
        (**self).next_u32()
    }

    fn next_u64(&mut self) -> u64 {
        (**self).next_u64()
    }

    fn next_f32(&mut self) -> f32 {
        (**self).next_f32()
    }

    fn next_f64(&mut self) -> f64 {
        (**self).next_f64()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        (**self).fill_bytes(dest)
    }
}

impl<R: ?Sized> Rng for Box<R> where R: Rng {
    fn next_u32(&mut self) -> u32 {
        (**self).next_u32()
    }

    fn next_u64(&mut self) -> u64 {
        (**self).next_u64()
    }

    fn next_f32(&mut self) -> f32 {
        (**self).next_f32()
    }

    fn next_f64(&mut self) -> f64 {
        (**self).next_f64()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        (**self).fill_bytes(dest)
    }
}

/// Iterator which will generate a stream of random items.
///
/// This iterator is created via the [`gen_iter`] method on [`Rng`].
///
/// [`gen_iter`]: trait.Rng.html#method.gen_iter
/// [`Rng`]: trait.Rng.html
#[derive(Debug)]
pub struct Generator<'a, T, R:'a> {
    rng: &'a mut R,
    _marker: marker::PhantomData<fn() -> T>,
}

impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        Some(self.rng.gen())
    }
}

/// Iterator which will continuously generate random ascii characters.
///
/// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`].
///
/// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars
/// [`Rng`]: trait.Rng.html
#[derive(Debug)]
pub struct AsciiGenerator<'a, R:'a> {
    rng: &'a mut R,
}

impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> {
    type Item = char;

    fn next(&mut self) -> Option<char> {
        const GEN_ASCII_STR_CHARSET: &'static [u8] =
            b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
              abcdefghijklmnopqrstuvwxyz\
              0123456789";
        Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char)
    }
}

/// A random number generator that can be explicitly seeded to produce
/// the same stream of randomness multiple times.
pub trait SeedableRng<Seed>: Rng {
    /// Reseed an RNG with the given seed.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{Rng, SeedableRng, StdRng};
    ///
    /// let seed: &[_] = &[1, 2, 3, 4];
    /// let mut rng: StdRng = SeedableRng::from_seed(seed);
    /// println!("{}", rng.gen::<f64>());
    /// rng.reseed(&[5, 6, 7, 8]);
    /// println!("{}", rng.gen::<f64>());
    /// ```
    fn reseed(&mut self, Seed);

    /// Create a new RNG with the given seed.
    ///
    /// # Example
    ///
    /// ```rust
    /// use rand::{Rng, SeedableRng, StdRng};
    ///
    /// let seed: &[_] = &[1, 2, 3, 4];
    /// let mut rng: StdRng = SeedableRng::from_seed(seed);
    /// println!("{}", rng.gen::<f64>());
    /// ```
    fn from_seed(seed: Seed) -> Self;
}

/// An Xorshift[1] random number
/// generator.
///
/// The Xorshift algorithm is not suitable for cryptographic purposes
/// but is very fast. If you do not know for sure that it fits your
/// requirements, use a more secure one such as `IsaacRng` or `OsRng`.
///
/// [1]: Marsaglia, George (July 2003). ["Xorshift
/// RNGs"](http://www.jstatsoft.org/v08/i14/paper). *Journal of
/// Statistical Software*. Vol. 8 (Issue 14).
#[allow(missing_copy_implementations)]
#[derive(Clone, Debug)]
pub struct XorShiftRng {
    x: w32,
    y: w32,
    z: w32,
    w: w32,
}

impl XorShiftRng {
    /// Creates a new XorShiftRng instance which is not seeded.
    ///
    /// The initial values of this RNG are constants, so all generators created
    /// by this function will yield the same stream of random numbers. It is
    /// highly recommended that this is created through `SeedableRng` instead of
    /// this function
    pub fn new_unseeded() -> XorShiftRng {
        XorShiftRng {
            x: w(0x193a6754),
            y: w(0xa8a7d469),
            z: w(0x97830e05),
            w: w(0x113ba7bb),
        }
    }
}

impl Rng for XorShiftRng {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        let x = self.x;
        let t = x ^ (x << 11);
        self.x = self.y;
        self.y = self.z;
        self.z = self.w;
        let w_ = self.w;
        self.w = w_ ^ (w_ >> 19) ^ (t ^ (t >> 8));
        self.w.0
    }
}

impl SeedableRng<[u32; 4]> for XorShiftRng {
    /// Reseed an XorShiftRng. This will panic if `seed` is entirely 0.
    fn reseed(&mut self, seed: [u32; 4]) {
        assert!(!seed.iter().all(|&x| x == 0),
                "XorShiftRng.reseed called with an all zero seed.");

        self.x = w(seed[0]);
        self.y = w(seed[1]);
        self.z = w(seed[2]);
        self.w = w(seed[3]);
    }

    /// Create a new XorShiftRng. This will panic if `seed` is entirely 0.
    fn from_seed(seed: [u32; 4]) -> XorShiftRng {
        assert!(!seed.iter().all(|&x| x == 0),
                "XorShiftRng::from_seed called with an all zero seed.");

        XorShiftRng {
            x: w(seed[0]),
            y: w(seed[1]),
            z: w(seed[2]),
            w: w(seed[3]),
        }
    }
}

impl Rand for XorShiftRng {
    fn rand<R: Rng>(rng: &mut R) -> XorShiftRng {
        let mut tuple: (u32, u32, u32, u32) = rng.gen();
        while tuple == (0, 0, 0, 0) {
            tuple = rng.gen();
        }
        let (x, y, z, w_) = tuple;
        XorShiftRng { x: w(x), y: w(y), z: w(z), w: w(w_) }
    }
}

/// A wrapper for generating floating point numbers uniformly in the
/// open interval `(0,1)` (not including either endpoint).
///
/// Use `Closed01` for the closed interval `[0,1]`, and the default
/// `Rand` implementation for `f32` and `f64` for the half-open
/// `[0,1)`.
///
/// # Example
/// ```rust
/// use rand::{random, Open01};
///
/// let Open01(val) = random::<Open01<f32>>();
/// println!("f32 from (0,1): {}", val);
/// ```
#[derive(Debug)]
pub struct Open01<F>(pub F);

/// A wrapper for generating floating point numbers uniformly in the
/// closed interval `[0,1]` (including both endpoints).
///
/// Use `Open01` for the closed interval `(0,1)`, and the default
/// `Rand` implementation of `f32` and `f64` for the half-open
/// `[0,1)`.
///
/// # Example
///
/// ```rust
/// use rand::{random, Closed01};
///
/// let Closed01(val) = random::<Closed01<f32>>();
/// println!("f32 from [0,1]: {}", val);
/// ```
#[derive(Debug)]
pub struct Closed01<F>(pub F);

/// The standard RNG. This is designed to be efficient on the current
/// platform.
#[derive(Copy, Clone, Debug)]
pub struct StdRng {
    rng: IsaacWordRng,
}

impl StdRng {
    /// Create a randomly seeded instance of `StdRng`.
    ///
    /// This is a very expensive operation as it has to read
    /// randomness from the operating system and use this in an
    /// expensive seeding operation. If one is only generating a small
    /// number of random numbers, or doesn't need the utmost speed for
    /// generating each number, `thread_rng` and/or `random` may be more
    /// appropriate.
    ///
    /// Reading the randomness from the OS may fail, and any error is
    /// propagated via the `io::Result` return value.
    pub fn new() -> io::Result<StdRng> {
        OsRng::new().map(|mut r| StdRng { rng: r.gen() })
    }
}

impl Rng for StdRng {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        self.rng.next_u32()
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        self.rng.next_u64()
    }
}

impl<'a> SeedableRng<&'a [usize]> for StdRng {
    fn reseed(&mut self, seed: &'a [usize]) {
        // the internal RNG can just be seeded from the above
        // randomness.
        self.rng.reseed(unsafe {mem::transmute(seed)})
    }

    fn from_seed(seed: &'a [usize]) -> StdRng {
        StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) }
    }
}

/// Create a weak random number generator with a default algorithm and seed.
///
/// It returns the fastest `Rng` algorithm currently available in Rust without
/// consideration for cryptography or security. If you require a specifically
/// seeded `Rng` for consistency over time you should pick one algorithm and
/// create the `Rng` yourself.
///
/// This will seed the generator with randomness from thread_rng.
pub fn weak_rng() -> XorShiftRng {
    thread_rng().gen()
}

/// Controls how the thread-local RNG is reseeded.
#[derive(Debug)]
struct ThreadRngReseeder;

impl reseeding::Reseeder<StdRng> for ThreadRngReseeder {
    fn reseed(&mut self, rng: &mut StdRng) {
        match StdRng::new() {
            Ok(r) => *rng = r,
            Err(_) => rng.reseed(&weak_seed())
        }
    }
}
const THREAD_RNG_RESEED_THRESHOLD: u64 = 32_768;
type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>;

/// The thread-local RNG.
#[derive(Clone, Debug)]
pub struct ThreadRng {
    rng: Rc<RefCell<ThreadRngInner>>,
}

/// Retrieve the lazily-initialized thread-local random number
/// generator, seeded by the system. Intended to be used in method
/// chaining style, e.g. `thread_rng().gen::<i32>()`.
///
/// After generating a certain amount of randomness, the RNG will reseed itself
/// from the operating system or, if the operating system RNG returns an error,
/// a seed based on the current system time.
///
/// The internal RNG used is platform and architecture dependent, even
/// if the operating system random number generator is rigged to give
/// the same sequence always. If absolute consistency is required,
/// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`.
pub fn thread_rng() -> ThreadRng {
    // used to make space in TLS for a random number generator
    thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = {
        let r = match StdRng::new() {
            Ok(r) => r,
            Err(_) => StdRng::from_seed(&weak_seed())
        };
        let rng = reseeding::ReseedingRng::new(r,
                                               THREAD_RNG_RESEED_THRESHOLD,
                                               ThreadRngReseeder);
        Rc::new(RefCell::new(rng))
    });

    ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) }
}

fn weak_seed() -> [usize; 2] {
    let now = time::SystemTime::now();
    let unix_time = now.duration_since(time::UNIX_EPOCH).unwrap();
    let seconds = unix_time.as_secs() as usize;
    let nanoseconds = unix_time.subsec_nanos() as usize;
    [seconds, nanoseconds]
}

impl Rng for ThreadRng {
    fn next_u32(&mut self) -> u32 {
        self.rng.borrow_mut().next_u32()
    }

    fn next_u64(&mut self) -> u64 {
        self.rng.borrow_mut().next_u64()
    }

    #[inline]
    fn fill_bytes(&mut self, bytes: &mut [u8]) {
        self.rng.borrow_mut().fill_bytes(bytes)
    }
}

/// Generates a random value using the thread-local random number generator.
///
/// `random()` can generate various types of random things, and so may require
/// type hinting to generate the specific type you want.
///
/// This function uses the thread local random number generator. This means
/// that if you're calling `random()` in a loop, caching the generator can
/// increase performance. An example is shown below.
///
/// # Examples
///
/// ```
/// let x = rand::random::<u8>();
/// println!("{}", x);
///
/// let y = rand::random::<f64>();
/// println!("{}", y);
///
/// if rand::random() { // generates a boolean
///     println!("Better lucky than good!");
/// }
/// ```
///
/// Caching the thread local random number generator:
///
/// ```
/// use rand::Rng;
///
/// let mut v = vec![1, 2, 3];
///
/// for x in v.iter_mut() {
///     *x = rand::random()
/// }
///
/// // would be faster as
///
/// let mut rng = rand::thread_rng();
///
/// for x in v.iter_mut() {
///     *x = rng.gen();
/// }
/// ```
#[inline]
pub fn random<T: Rand>() -> T {
    thread_rng().gen()
}

/// Randomly sample up to `amount` elements from a finite iterator.
/// The order of elements in the sample is not random.
///
/// # Example
///
/// ```rust
/// use rand::{thread_rng, sample};
///
/// let mut rng = thread_rng();
/// let sample = sample(&mut rng, 1..100, 5);
/// println!("{:?}", sample);
/// ```
pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T>
    where I: IntoIterator<Item=T>,
          R: Rng,
{
    let mut iter = iterable.into_iter();
    let mut reservoir: Vec<T> = iter.by_ref().take(amount).collect();
    // continue unless the iterator was exhausted
    if reservoir.len() == amount {
        for (i, elem) in iter.enumerate() {
            let k = rng.gen_range(0, i + 1 + amount);
            if let Some(spot) = reservoir.get_mut(k) {
                *spot = elem;
            }
        }
    }
    reservoir
}

#[cfg(test)]
mod test {
    use super::{Rng, thread_rng, random, SeedableRng, StdRng, sample,
                weak_rng};
    use std::iter::repeat;

    pub struct MyRng<R> { inner: R }

    impl<R: Rng> Rng for MyRng<R> {
        fn next_u32(&mut self) -> u32 {
            fn next<T: Rng>(t: &mut T) -> u32 {
                t.next_u32()
            }
            next(&mut self.inner)
        }
    }

    pub fn rng() -> MyRng<::ThreadRng> {
        MyRng { inner: ::thread_rng() }
    }

    struct ConstRng { i: u64 }
    impl Rng for ConstRng {
        fn next_u32(&mut self) -> u32 { self.i as u32 }
        fn next_u64(&mut self) -> u64 { self.i }

        // no fill_bytes on purpose
    }

    pub fn iter_eq<I, J>(i: I, j: J) -> bool
        where I: IntoIterator,
              J: IntoIterator<Item=I::Item>,
              I::Item: Eq
    {
        // make sure the iterators have equal length
        let mut i = i.into_iter();
        let mut j = j.into_iter();
        loop {
            match (i.next(), j.next()) {
                (Some(ref ei), Some(ref ej)) if ei == ej => { }
                (None, None) => return true,
                _ => return false,
            }
        }
    }

    #[test]
    fn test_fill_bytes_default() {
        let mut r = ConstRng { i: 0x11_22_33_44_55_66_77_88 };

        // check every remainder mod 8, both in small and big vectors.
        let lengths = [0, 1, 2, 3, 4, 5, 6, 7,
                       80, 81, 82, 83, 84, 85, 86, 87];
        for &n in lengths.iter() {
            let mut v = repeat(0u8).take(n).collect::<Vec<_>>();
            r.fill_bytes(&mut v);

            // use this to get nicer error messages.
            for (i, &byte) in v.iter().enumerate() {
                if byte == 0 {
                    panic!("byte {} of {} is zero", i, n)
                }
            }
        }
    }

    #[test]
    fn test_gen_range() {
        let mut r = thread_rng();
        for _ in 0..1000 {
            let a = r.gen_range(-3, 42);
            assert!(a >= -3 && a < 42);
            assert_eq!(r.gen_range(0, 1), 0);
            assert_eq!(r.gen_range(-12, -11), -12);
        }

        for _ in 0..1000 {
            let a = r.gen_range(10, 42);
            assert!(a >= 10 && a < 42);
            assert_eq!(r.gen_range(0, 1), 0);
            assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000);
        }

    }

    #[test]
    #[should_panic]
    fn test_gen_range_panic_int() {
        let mut r = thread_rng();
        r.gen_range(5, -2);
    }

    #[test]
    #[should_panic]
    fn test_gen_range_panic_usize() {
        let mut r = thread_rng();
        r.gen_range(5, 2);
    }

    #[test]
    fn test_gen_f64() {
        let mut r = thread_rng();
        let a = r.gen::<f64>();
        let b = r.gen::<f64>();
        debug!("{:?}", (a, b));
    }

    #[test]
    fn test_gen_weighted_bool() {
        let mut r = thread_rng();
        assert_eq!(r.gen_weighted_bool(0), true);
        assert_eq!(r.gen_weighted_bool(1), true);
    }

    #[test]
    fn test_gen_ascii_str() {
        let mut r = thread_rng();
        assert_eq!(r.gen_ascii_chars().take(0).count(), 0);
        assert_eq!(r.gen_ascii_chars().take(10).count(), 10);
        assert_eq!(r.gen_ascii_chars().take(16).count(), 16);
    }

    #[test]
    fn test_gen_vec() {
        let mut r = thread_rng();
        assert_eq!(r.gen_iter::<u8>().take(0).count(), 0);
        assert_eq!(r.gen_iter::<u8>().take(10).count(), 10);
        assert_eq!(r.gen_iter::<f64>().take(16).count(), 16);
    }

    #[test]
    fn test_choose() {
        let mut r = thread_rng();
        assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1));

        let v: &[isize] = &[];
        assert_eq!(r.choose(v), None);
    }

    #[test]
    fn test_shuffle() {
        let mut r = thread_rng();
        let empty: &mut [isize] = &mut [];
        r.shuffle(empty);
        let mut one = [1];
        r.shuffle(&mut one);
        let b: &[_] = &[1];
        assert_eq!(one, b);

        let mut two = [1, 2];
        r.shuffle(&mut two);
        assert!(two == [1, 2] || two == [2, 1]);

        let mut x = [1, 1, 1];
        r.shuffle(&mut x);
        let b: &[_] = &[1, 1, 1];
        assert_eq!(x, b);
    }

    #[test]
    fn test_thread_rng() {
        let mut r = thread_rng();
        r.gen::<i32>();
        let mut v = [1, 1, 1];
        r.shuffle(&mut v);
        let b: &[_] = &[1, 1, 1];
        assert_eq!(v, b);
        assert_eq!(r.gen_range(0, 1), 0);
    }

    #[test]
    fn test_rng_trait_object() {
        let mut rng = thread_rng();
        {
            let mut r = &mut rng as &mut Rng;
            r.next_u32();
            (&mut r).gen::<i32>();
            let mut v = [1, 1, 1];
            (&mut r).shuffle(&mut v);
            let b: &[_] = &[1, 1, 1];
            assert_eq!(v, b);
            assert_eq!((&mut r).gen_range(0, 1), 0);
        }
        {
            let mut r = Box::new(rng) as Box<Rng>;
            r.next_u32();
            r.gen::<i32>();
            let mut v = [1, 1, 1];
            r.shuffle(&mut v);
            let b: &[_] = &[1, 1, 1];
            assert_eq!(v, b);
            assert_eq!(r.gen_range(0, 1), 0);
        }
    }

    #[test]
    fn test_random() {
        // not sure how to test this aside from just getting some values
        let _n : usize = random();
        let _f : f32 = random();
        let _o : Option<Option<i8>> = random();
        let _many : ((),
                     (usize,
                      isize,
                      Option<(u32, (bool,))>),
                     (u8, i8, u16, i16, u32, i32, u64, i64),
                     (f32, (f64, (f64,)))) = random();
    }

    #[test]
    fn test_sample() {
        let min_val = 1;
        let max_val = 100;

        let mut r = thread_rng();
        let vals = (min_val..max_val).collect::<Vec<i32>>();
        let small_sample = sample(&mut r, vals.iter(), 5);
        let large_sample = sample(&mut r, vals.iter(), vals.len() + 5);

        assert_eq!(small_sample.len(), 5);
        assert_eq!(large_sample.len(), vals.len());

        assert!(small_sample.iter().all(|e| {
            **e >= min_val && **e <= max_val
        }));
    }

    #[test]
    fn test_std_rng_seeded() {
        let s = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
        let mut ra: StdRng = SeedableRng::from_seed(&s[..]);
        let mut rb: StdRng = SeedableRng::from_seed(&s[..]);
        assert!(iter_eq(ra.gen_ascii_chars().take(100),
                        rb.gen_ascii_chars().take(100)));
    }

    #[test]
    fn test_std_rng_reseed() {
        let s = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
        let mut r: StdRng = SeedableRng::from_seed(&s[..]);
        let string1 = r.gen_ascii_chars().take(100).collect::<String>();

        r.reseed(&s);

        let string2 = r.gen_ascii_chars().take(100).collect::<String>();
        assert_eq!(string1, string2);
    }

    #[test]
    fn test_weak_rng() {
        let s = weak_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>();
        let mut ra: StdRng = SeedableRng::from_seed(&s[..]);
        let mut rb: StdRng = SeedableRng::from_seed(&s[..]);
        assert!(iter_eq(ra.gen_ascii_chars().take(100),
                        rb.gen_ascii_chars().take(100)));
    }
}